YES(?,O(n^2)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^2)). Strict Trs: { q(s(x), y) -> p(s(x), 0(), s(0()), y) , p(s(x), y, z, u) -> p(x, s(y), s(s(z)), u) , p(0(), s(x), y, z) -> q(x, add(x, z)) , add(s(x), y) -> s(add(x, y)) , add(0(), x) -> x } Obligation: runtime complexity Answer: YES(?,O(n^2)) The following argument positions are usable: Uargs(s) = {1}, Uargs(q) = {2}, Uargs(p) = {4}, Uargs(add) = {2} TcT has computed following constructor-restricted polynomial interpretation. [s](x1) = 2 + x1 [q](x1, x2) = 1 + x1 + x1^2 + x2 [0]() = 0 [p](x1, x2, x3, x4) = x1 + 2*x1*x2 + x1^2 + x2^2 + x4 [add](x1, x2) = 1 + 2*x1 + x2 This order satisfies following ordering constraints [q(s(x), y)] = 7 + 5*x + x^2 + y > 6 + 5*x + x^2 + y = [p(s(x), 0(), s(0()), y)] [p(s(x), y, z, u)] = 6 + 5*x + 4*y + 2*x*y + x^2 + y^2 + u > 5*x + 2*x*y + x^2 + 4 + 4*y + y^2 + u = [p(x, s(y), s(s(z)), u)] [p(0(), s(x), y, z)] = 4 + 4*x + x^2 + z > 2 + 3*x + x^2 + z = [q(x, add(x, z))] [add(s(x), y)] = 5 + 2*x + y > 3 + 2*x + y = [s(add(x, y))] [add(0(), x)] = 1 + x > x = [x] Hurray, we answered YES(?,O(n^2))